K+-conducting ion channel of the chloroplast inner envelope: functional reconstitution into liposomes.

نویسندگان

  • X Wang
  • G A Berkowitz
  • J S Peters
چکیده

Potassium flux between the chloroplast stroma and cytoplasm is known to be indirectly linked to H+ countertransport and, hence, stromal pH and photosynthetic capacity. The specific molecular mechanism that facilitates K+ flux across the chloroplast envelope is not known and has been a source of controversy for well over a decade. The objective of this study was to elucidate the nature of this envelope protein. To this end, solubilized protein in detergent extracts of purified chloroplast inner envelope vesicles was reconstituted into artificial liposomes, and cation fluxes into these proteoliposomes were measured. Results of inhibitor studies and counterflux experiments indicated that a K+-conducting ion channel was solubilized and functionally reconstituted into the proteoliposomes. This transport protein may be a nonspecific monovalent cation channel. This report represents a direct demonstration of ion channel activity associated with the limiting (inner) membrane of the chloroplast envelope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stromal pH and Photosynthesis Are Affected by Electroneutral K and H Exchange through Chloroplast Envelope Ion Channels.

Potassium movement across the limiting membrane of the chloroplast inner envelope is known to be linked to counterex-change of protons. For this reason, K(+) efflux is known to facilitate stromal acidification and the resultant photosynthetic inhibition. However, the specific nature of the chloroplast envelope proteins that facilitate K(+) fluxes, and the biophysical mechanism which links these...

متن کامل

Characterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane

Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...

متن کامل

Further investigation on the high-conductance ion channel of the inner membrane of mitochondria.

By use of the patch-clamp technique, the inner membrane of mouse liver and heart mitochondria is shown to contain a highly conductive (around 100 pS in symmetrical 150 mM KCl) and voltage-dependent ion channel. This channel closely resembles that previously found in cuprizone-treated mouse liver inner mitochondrial membrane. The paper discusses the electrical properties of the channel and its p...

متن کامل

Tic21 is an essential translocon component for protein translocation across the chloroplast inner envelope membrane.

An Arabidopsis thaliana mutant defective in chloroplast protein import was isolated and the mutant locus, cia5, identified by map-based cloning. CIA5 is a 21-kD integral membrane protein in the chloroplast inner envelope membrane with four predicted transmembrane domains, similar to another potential chloroplast inner membrane protein-conducting channel, At Tic20, and the mitochondrial inner me...

متن کامل

Patch-clamp study of liver nuclear ionic channels reconstituted into giant proteoliposomes.

Nuclear ionic channels (NICs) represent ubiquitous structures of living cells, although little is known about their functional properties and encoding genes. To characterize NICs, liver nuclear membrane vesicles were reconstituted into either planar lipid bilayers or proteoliposomes. Reconstitution of nuclear envelope (NE) vesicles into planar lipid bilayer proceeded with low efficiency. NE ves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 90 11  شماره 

صفحات  -

تاریخ انتشار 1993